Role of wearable electrochemical biosensors in monitoring renal function biomarkers in sweat: a review

Real-time detection of renal biomarkers is crucial for immediate and continuous monitoring of kidney function, facilitating early diagnosis and intervention in kidney-related disorders. This proactive approach enables timely adjustments in treatment plans, particularly in critical situations, and enhances overall patient care. Wearable devices emerge as a promising solution, enabling non-invasive and real-time data collection. This comprehensive review investigates numerous types of wearable sensors designed to detect kidney biomarkers in body fluids such as sweat. It critically evaluates the precision, dependability, and user-friendliness of these devices, contemplating their seamless integration into daily life for continuous health tracking. The review highlights the potential influence of wearable technology on individualized renal healthcare and its role in preventative medicine while also addressing challenges and future directions. The review's goal is to provide guidance to academics, healthcare professionals, and technologists working on wearable solutions for renal biomarker detection by compiling the body of current knowledge and advancements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

Sweat-Based in Vitro Diagnostics (IVD): From Sample Collection to Point-of-Care Testing (POCT)

Article 01 January 2019

Accessing analytes in biofluids for peripheral biochemical monitoring

Article 25 February 2019

Opportunities and challenges for sweat-based monitoring of metabolic syndrome via wearable technologies

Article Open access 18 July 2023

Data availability

Data will be made available on request.

References

  1. J. Kim, A.S. Campbell, B.E.F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019) ArticleCASPubMedPubMed CentralGoogle Scholar
  2. SSh.M. Ameen, I.B. Qader, H.A. Qader, F.K. Algethami, B.Y. Abdulkhair, K.M. Omer, Dual-state dual emission from precise chemically engineered bi-ligand MOF free from encapsulation and functionalization with self-calibration model for visual detection. Microchim. Acta 191(1), 62 (2023) ArticleGoogle Scholar
  3. J.R. Sempionatto, I. Jeerapan, S. Krishnan, J. Wang, Wearable chemical sensors: emerging systems for on-body analytical chemistry. Anal. Chem. 92(1), 378–396 (2020) ArticleCASPubMedGoogle Scholar
  4. J. Kim, R. Kumar, A.J. Bandodkar, J. Wang, Advanced materials for printed wearable electrochemical devices: a review. Adv. Electron. Mater. 3(1), 1600260 (2017) ArticleGoogle Scholar
  5. H. Teymourian, M. Parrilla, J.R. Sempionatto, N.F. Montiel, A. Barfidokht, R. Van Echelpoel et al., Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens. 5(9), 2679–2700 (2020) ArticleCASPubMedGoogle Scholar
  6. J.R. Windmiller, J. Wang, Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25(1), 29–46 (2013) ArticleCASGoogle Scholar
  7. B. Bikbov, C.A. Purcell, A.S. Levey, M. Smith, A. Abdoli, M. Abebe et al., Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 395(10225), 709–733 (2020) ArticleGoogle Scholar
  8. F. Dieterle, F. Sistare, F. Goodsaid, M. Papaluca, J.S. Ozer, C.P. Webb et al., Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat. Biotechnol. 28(5), 455–462 (2010) ArticleCASPubMedGoogle Scholar
  9. L.H. Lash, Cellular and functional biomarkers of renal injury and disease. Curr. Opin. Toxicol. 31, 100348 (2022) ArticleCASPubMedPubMed CentralGoogle Scholar
  10. B. Unadike, Commentary on the burden of chronic kidney disease. Ibom Med. J. 5, 1–2 (2012) ArticleGoogle Scholar
  11. P. Agre, G.M. Preston, B.L. Smith, J.S. Jung, S. Raina, C. Moon et al., Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol.-Ren. Physiol. 265(4), F463–F476 (1999) ArticleGoogle Scholar
  12. D.R. Finco, Chapter 17 - Kidney function, in Clinical Biochemistry of Domestic Animals (Fifth Edition). ed. by J.J. Kaneko, J.W. Harvey, M.L. Bruss (Academic Press, San Diego, 1997), pp.441–484 ChapterGoogle Scholar
  13. S.P. Mohanty, E. Kougianos, Biosensors: a tutorial review. IEEE Potentials 25(2), 35–40 (2006) ArticleGoogle Scholar
  14. F. Ghasemi, N. Fahimi-Kashani, A. Bigdeli, A.H. Alshatteri, S. Abbasi-Moayed, S.H. Al-Jaf et al., Paper-based optical nanosensors – a review. Anal. Chim. Acta 1238, 340640 (2023) ArticleCASPubMedGoogle Scholar
  15. Y. Lee, J. Kim, H. Joo, M.S. Raj, R. Ghaffari, D.H. Kim, Wearable sensing systems with mechanically soft assemblies of nanoscale materials. Adv. Mater. Technol. 2(9), 1700053 (2017) ArticleGoogle Scholar
  16. J. Xie, Q. Chen, H. Shen, G. Li, Review—Wearable graphene devices for sensing. J. Electrochem. Soc. 167(3), 037541 (2020) ArticleCASGoogle Scholar
  17. S.M.A. Iqbal, I. Mahgoub, E. Du, M.A. Leavitt, W. Asghar, Advances in healthcare wearable devices. npj Flex. Electron. 5(1), 1–14 (2021) ArticleGoogle Scholar
  18. J.V. Vaghasiya, C.C. Mayorga-Martinez, M. Pumera, Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. npj Flex. Electron. 7(1), 1–14 (2023) ArticleGoogle Scholar
  19. L. Qiao, M.R. Benzigar, J.A. Subramony, N.H. Lovell, G. Liu, Advances in sweat wearables: sample extraction, real-time biosensing, and flexible platforms. ACS Appl. Mater. Interfaces 12(30), 34337–34361 (2020) ArticleCASPubMedGoogle Scholar
  20. C.H. Chen, P.W. Lee, Y.H. Tsao, Z.H. Lin, Utilization of self-powered electrochemical systems: metallic nanoparticle synthesis and lactate detection. Nano Energy 42, 241–248 (2017) ArticleCASGoogle Scholar
  21. A.J. Bandodkar, W.J. Jeang, R. Ghaffari, J.A. Rogers, Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. 12(1), 1–22 (2019) ArticleGoogle Scholar
  22. N.D. Zakaria, H.H. Hamzah, I.L. Salih, V. Balakrishnan, R.K. Abdul, A Review of detection methods for vancomycin-resistant enterococci (VRE) genes: from conventional approaches to potentially electrochemical DNA biosensors. Biosensors 13(2), 294 (2023) ArticleCASPubMedPubMed CentralGoogle Scholar
  23. K.M. Omer, A.L. Kanibolotsky, P.J. Skabara, I.F. Perepichka, A.J. Bard, Electrochemistry, spectroscopy, and electrogenerated chemiluminescence of some star-shaped truxene-oligofluorene compounds. J. Phys. Chem. B 111(24), 6612–6619 (2007) ArticleCASPubMedGoogle Scholar
  24. I.H. Cho, D.H. Kim, S. Park, Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater. Res. 24(1), 6 (2020) ArticleCASPubMedPubMed CentralGoogle Scholar
  25. M. Pohanka, P. Skládal, Electrochemical biosensors—principles and applications. J. Appl. Biomed. 6, 57–64 (2008) ArticleCASGoogle Scholar
  26. K.M. Omer, S.Y. Ku, Y.C. Chen, K.T. Wong, A.J. Bard, Electrochemical behavior and electrogenerated chemiluminescence of star-shaped D-A compounds with a 1,3,5-triazine core and substituted fluorene arms. J. Am. Chem. Soc. 132(31), 10944–10952 (2010) ArticleCASPubMedGoogle Scholar
  27. Y. Wang, H. Xu, J. Zhang, G. Li, Electrochemical sensors for clinic analysis. Sensors 8(4), 2043–2081 (2008) ArticleCASPubMedPubMed CentralGoogle Scholar
  28. P. Batista Deroco, J.D.F. Giarola, D. Wachholz Júnior, G. Arantes Lorga, Kubota L. Tatsuo, Chapter Four - Paper-based electrochemical sensing devices, in Comprehensive Analytical Chemistry, vol. 89, ed. by A. Merkoçi (Elsevier, Amsterdam, 2020), pp.91–137 Google Scholar
  29. J. Ding, W. Qin, Recent advances in potentiometric biosensors. TrAC Trends Anal. Chem. 124, 115803 (2020) ArticleCASGoogle Scholar
  30. M. Parrilla, J. Ferré, T. Guinovart, F.J. Andrade, Wearable potentiometric sensors based on commercial carbon fibres for monitoring sodium in sweat. Electroanalysis 28(6), 1267–1275 (2016) ArticleCASGoogle Scholar
  31. Q. An, S. Gan, J. Xu, Y. Bao, T. Wu, H. Kong et al., A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring. Electrochem. Commun. 107, 106553 (2019) ArticleCASGoogle Scholar
  32. G. Ibáñez-Redín, G. Cagnani, N. Gomes, P. Raymundo-Pereira, S. Machado, M. AntonioGutierrez et al., Wearable potentiometric biosensor for analysis of urea in sweat. Biosens. Bioelectron. 223, 114994 (2022) ArticlePubMedGoogle Scholar
  33. S. Bilal, Cyclic voltammetry, in Encyclopedia of Applied Electrochemistry. ed. by G. Kreysa, K.I. Ota, R.F. Savinell (Springer, 2014), pp.285–289 ChapterGoogle Scholar
  34. S.B. Adeloju, Amperometry, in Encyclopedia of Analytical Science (Second Edition). ed. by P. Worsfold, A. Townshend, C. Poole (Elsevier, 2005), pp.70–79 ChapterGoogle Scholar
  35. M. Lovrić, Square-wave voltammetry, in Electroanalytical Methods: Guide to Experiments and Applications. ed. by F. Scholz, A.M. Bond, R.G. Compton, D.A. Fiedler, G. Inzelt, H. Kahlert et al. (Springer, 2010), pp.121–145 ChapterGoogle Scholar
  36. V. Mirceski, R. Gulaboski, M. Lovric, I. Bogeski, R. Kappl, M. Hoth, Square-wave voltammetry: a review on the recent progress. Electroanalysis 25(11), 2411–2422 (2013) ArticleCASGoogle Scholar
  37. J. Yoon, M. Sim, T.S. Oh, Y.S. Yoon, D.J. Kim, Flexible electrochemical sensor based on NiCu(OOH) for monitoring urea in human sweat. J. Electrochem. Soc. 168(11), 117510 (2021) ArticleCASGoogle Scholar
  38. Y. Chen, G. Li, W. Mu, X. Wan, D. Lu, J. Gao et al., Nonenzymatic sweat wearable uric acid sensor based on N-doped reduced graphene oxide/Au dual aerogels. Anal. Chem. 95(7), 3864–3872 (2023) ArticleCASPubMedGoogle Scholar
  39. Wiley.com, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, 2024)
  40. M.S. Belluzo, M.E. Ribone, C.M. Lagier, Assembling amperometric biosensors for clinical diagnostics. Sensors 8(3), 1366–1399 (2008) ArticleCASPubMedPubMed CentralGoogle Scholar
  41. P. Kassal, J. Kim, R. Kumar, W.R. de Araujo, I.M. Steinberg, M.D. Steinberg et al., Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochem. Commun. 56, 6–10 (2015) ArticleCASGoogle Scholar
  42. B. Gil, S. Anastasova, G.Z. Yang, A smart wireless ear-worn device for cardiovascular and sweat parameter monitoring during physical exercise: design and performance results. Sensors 19(7), 1616 (2019) ArticleCASPubMedPubMed CentralGoogle Scholar
  43. J. Baranwal, B. Barse, G. Gatto, G. Broncova, A. Kumar, Electrochemical sensors and their applications: a review. Chemosensors. 10(9), 363 (2022) ArticleCASGoogle Scholar
  44. M.L. Yahaya, R. Noordin, Razak K. Abdul, Chapter 1 - Advanced nanoparticle-based biosensors for diagnosing foodborne pathogens, in Advanced Biosensors for Health Care Applications. ed. by A. Inamuddin, R. Khan, A. Mohammad, A.M. Asiri (Elsevier, 2019), pp.1–43 Google Scholar
  45. D. Khodagholy, V.F. Curto, K.J. Fraser, M. Gurfinkel, R. Byrne, D. Diamond et al., Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 22(10), 4440–4443 (2012) ArticleCASGoogle Scholar
  46. C.S. Pundir, S. Jakhar, V. Narwal, Determination of urea with special emphasis on biosensors: a review. Biosens. Bioelectron. 123, 36–50 (2019) ArticleCASPubMedGoogle Scholar
  47. T. Liu, X. Liu, Perspectives in wearable systems in the human-robot interaction (HRI) field. Sensors 23(19), 8315 (2023) ArticlePubMedPubMed CentralGoogle Scholar
  48. Y.L. Liu, R. Liu, Y. Qin, Q.F. Qiu, Z. Chen, S.B. Cheng et al., Flexible electrochemical urea sensor based on surface molecularly imprinted nanotubes for detection of human sweat. Anal. Chem. 90(21), 13081–13087 (2018) ArticleCASPubMedGoogle Scholar
  49. N. Promphet, W. Phamonpon, W. Karintrithip, P. Rattanawaleedirojn, K. Saengkiettiyut, Y. Boonyongmaneerat et al., Carbonization of self-reduced AuNPs on silk as wearable skin patches for non-invasive sweat urea detection. Int. J. Biol. Macromol. 242(Pt 2), 124757 (2023) ArticleCASPubMedGoogle Scholar
  50. Z. Li, Y. Wang, Z. Fan, Y. Sun, Y. Sun, Y. Yang et al., A dual-function wearable electrochemical sensor for uric acid and glucose sensing in sweat. Biosensors 13(1), 105 (2023) ArticleCASPubMedPubMed CentralGoogle Scholar
  51. Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak, L. Zhu et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38(2), 217–224 (2020) ArticleCASPubMedGoogle Scholar
  52. X. Liu, P.B. Lillehoj, Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers. Biosens. Bioelectron. 98, 189–194 (2017) ArticleCASPubMedGoogle Scholar
  53. Z. Xu, J. Song, B. Liu, S. Lv, F. Gao, X. Luo et al., A conducting polymer PEDOT:PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat. Sens. Actuators B Chem. 348, 130674 (2022) ArticleGoogle Scholar
  54. X. Wei, M. Zhu, J. Li, L. Liu, J. Yu, Z. Li et al., Wearable biosensor for sensitive detection of uric acid in artificial sweat enabled by a fiber structured sensing interface. Nano Energy 85, 106031 (2021) ArticleCASGoogle Scholar
  55. S. RoyChoudhury, Y. Umasankar, J. Jaller, I. Herskovitz, J. Mervis, E. Darwin et al., Continuous monitoring of wound healing using a wearable enzymatic uric acid biosensor. J. Electrochem. Soc. 165(8), B3168 (2018) ArticleCASGoogle Scholar
  56. J. Xiao, Y. Luo, L. Su, J. Lu, W. Han, T. Xu et al., Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid. Anal. Chim. Acta 1208, 339843 (2022) ArticleCASPubMedGoogle Scholar
  57. A. Singh, A. Sharma, S. Arya, Deposition of Ni/RGO nanocomposite on conductive cotton fabric as non-enzymatic wearable electrode for electrochemical sensing of uric acid in sweat. Diam. Relat. Mater. 130, 109518 (2022) ArticleCASGoogle Scholar
  58. Y. Zhang, C. Hou, P. Zhao, X. Zeng, Y. Liu, J. Chen et al., Fe single-atom nanozyme-modified wearable hydrogel patch for precise analysis of uric acid at rest. ACS Appl. Mater. Interfaces 15(37), 43541–43549 (2023) ArticleCASPubMedGoogle Scholar
  59. P. Raymundo-Pereira, N. Gomes, S.A.S. Machado, O. Oliveira, Wearable glove-embedded sensors for therapeutic drug monitoring in sweat for personalized medicine. Chem. Eng. J. 435, 135047 (2022) ArticleCASGoogle Scholar
  60. Y. Hu, L. Wang, J. Li, Y. Yang, G. Zhao, Y. Liu et al., Thin, soft, skin-integrated electronics for real-time and wireless detection of uric acid in sweat. Int. J. Smart Nano Mater. 14, 1–14 (2023) ArticleGoogle Scholar
  61. R.R. Silva, P.A. Raymundo-Pereira, A.M. Campos, D. Wilson, C.G. Otoni, H.S. Barud et al., Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 218, 121153 (2020) ArticleCASPubMedGoogle Scholar
  62. V. Kammarchedu, D. Butler, A. Ebrahimi, A machine learning-based multimodal electrochemical analytical device based on eMoSx-LIG for multiplexed detection of tyrosine and uric acid in sweat and saliva. Anal. Chim. Acta. 1232, 340447 (2022) ArticleCASPubMedGoogle Scholar
  63. F. Vivaldi, A. Dallinger, N. Poma, A. Bonini, D. Biagini, P. Salvo et al., Sweat analysis with a wearable sensing platform based on laser-induced graphene. APL Bioeng. 6(3), 036104 (2022) ArticleCASPubMedPubMed CentralGoogle Scholar
  64. L. Yang, H. Wang, A.M. Abdullah, C. Meng, X. Chen, A. Feng et al., Direct laser writing of the porous graphene foam for multiplexed electrochemical sweat sensors. ACS Appl. Mater. Interfaces 15, 34332–34342 (2023) ArticleCASPubMedGoogle Scholar
  65. X. Qiao, Y. Cai, Z. Kong, Z. Xu, X. Luo, A wearable electrochemical sensor based on anti-fouling and self-healing polypeptide complex hydrogels for sweat monitoring. ACS Sens. 8, 2834–2842 (2023) ArticleCASPubMedGoogle Scholar
  66. H. Lin, J. Tan, J. Zhu, S. Lin, Y. Zhao, W. Yu et al., A programmable epidermal microfluidic valving system for wearable biofluid management and contextual biomarker analysis. Nat. Commun. 11, 4405 (2020) ArticleCASPubMedPubMed CentralGoogle Scholar
  67. M. Asaduzzaman, M.A. Zahed, M. Sharifuzzaman, M.S. Reza, X. Hui, S. Sharma et al., A hybridized nano-porous carbon reinforced 3D graphene-based epidermal patch for precise sweat glucose and lactate analysis. Biosens. Bioelectron. 219, 114846 (2023) ArticleCASPubMedGoogle Scholar
  68. X. Luo, L. Guo, Y. Liu, W. Shi, W. Gai, Y. Cui, Wearable tape-based smart biosensing systems for lactate and glucose. IEEE Sens. J. 20(7), 3757–3765 (2020) ArticleCASGoogle Scholar
  69. M. Li, L. Wang, R. Liu, J. Li, Q. Zhang, G. Shi et al., A highly integrated sensing paper for wearable electrochemical sweat analysis. Biosens. Bioelectron. 174, 112828 (2020) ArticlePubMedGoogle Scholar
  70. A. Bhide, K.C. Lin, S. Muthukumar, S. Prasad, On-demand lactate monitoring towards assessing physiological responses in sedentary populations. The Analyst 6, 146 (2021) Google Scholar
  71. X. Xuan, C. Pérez-Ràfols, C. Chen, M. Cuartero, G.A. Crespo, Lactate biosensing for reliable on-body sweat analysis. ACS Sens. 6(7), 2763–2771 (2021) ArticleCASPubMedPubMed CentralGoogle Scholar
  72. T. Saha, T. Songkakul, C.T. Knisely, M.A. Yokus, M.A. Daniele, M.D. Dickey et al., Wireless wearable electrochemical sensing platform with zero-power osmotic sweat extraction for continuous lactate monitoring. ACS Sens. 7(7), 2037–2048 (2022) ArticleCASPubMedGoogle Scholar
  73. S. Santiago-Malagón, D. Río-Colín, H. Azizkhani, M. Aller-Pellitero, G. Guirado, F.J. Del Campo, A self-powered skin-patch electrochromic biosensor. Biosens. Bioelectron. 175, 112879 (2021) ArticlePubMedGoogle Scholar
  74. L. Meng, A.P.F. Turner, W.C. Mak, Conducting polymer-reinforced laser-irradiated graphene as a heterostructured 3D transducer for flexible skin patch biosensors. ACS Appl. Mater. Interfaces 13(45), 54456–54465 (2021) ArticleCASPubMedPubMed CentralGoogle Scholar
  75. A.J. Bandodkar, P. Gutruf, J. Choi, K. Lee, Y. Sekine, J.T. Reeder et al., Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5(1), eaav3294 (2019) ArticlePubMedPubMed CentralGoogle Scholar
  76. J. Dieffenderfer, M. Wilkins, C. Hood, E. Beppler, M.A. Daniele, A. Bozkurt, Towards a sweat-based wireless and wearable electrochemical sensor, in 2016 IEEE Sensors (2016), pp. 1–3
  77. Q. Zhang, D. Jiang, C. Xu, Y. Ge, X. Liu, Q. Wei et al., Wearable electrochemical biosensor based on molecularly imprinted Ag nanowires for noninvasive monitoring lactate in human sweat. Sens. Actuators, B Chem. 320, 128325 (2020) ArticleCASGoogle Scholar
  78. R. Wang, Q. Zhai, T. An, S. Gong, W. Cheng, Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta 222, 121484 (2020) ArticlePubMedGoogle Scholar
  79. M.A. Yokus, T. Saha, J. Fang, M.D. Dickey, O.D. Velev, M.A. Daniele, Towards wearable electrochemical lactate sensing using osmotic-capillary microfluidic pumping, in 2019 IEEE Sensors (2019), pp. 1–4
  80. M. Yu, Y.T. Li, Y. Hu, L. Tang, F. Yang, W.L. Lv et al., Gold nanostructure-programmed flexible electrochemical biosensor for detection of glucose and lactate in sweat. J. Electroanal. Chem. 882, 115029 (2021) ArticleCASGoogle Scholar
  81. H.Y.Y. Nyein, L.C. Tai, Q.P. Ngo, M. Chao, G.B. Zhang, W. Gao et al., A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens. 3(5), 944–952 (2018) ArticleCASPubMedGoogle Scholar
  82. C. Zhao, X. Li, Q. Wu, X. Liu, A thread-based wearable sweat nanobiosensor. Biosens. Bioelectron. 188, 113270 (2021) ArticleCASPubMedGoogle Scholar
  83. J. Wang, L. Wang, G. Li, D. Yan, C. Liu, T. Xu et al., Ultra-small wearable flexible biosensor for continuous sweat analysis. ACS Sens. 7(10), 3102–3107 (2022) ArticleCASPubMedGoogle Scholar
  84. V. Rajendran, T. Nakagawa, J. Mathiyarasu, A.M. Mohan, Fully printed wearable microfluidic devices for high-throughput sweat sampling and multiplexed electrochemical analysis. ACS Sens. 6, 1174–1186 (2021) ArticleGoogle Scholar
  85. X. Cui, Y. Bao, T. Han, L. Zhenbang, Y. Ma, Z. Sun, A wearable electrochemical sensor based on β-CD functionalized graphene for pH and potassium ion analysis in sweat. Talanta 245, 123481 (2022) ArticleCASPubMedGoogle Scholar
  86. X. Mei, J. Yang, J. Liu, Y. Li, Wearable, nanofiber-based microfluidic systems with integrated electrochemical and colorimetric sensing arrays for multiplex sweat analysis. Chem. Eng. J. 454, 140248 (2023) ArticleCASGoogle Scholar
  87. F. Lopresti, B. Patella, V. Divita, C. Zanca, L. Botta, N. Radacsi et al., Green and integrated wearable electrochemical sensor for chloride detection in sweat. Sensors (Basel) 22(21), 8223 (2022) ArticleCASPubMedGoogle Scholar
  88. J. Kim, W.R. De Araujo, I.A. Samek, A.J. Bandodkar, W. Jia, B. Brunetti et al., Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem. Commun. 51, 41–45 (2015) ArticleCASGoogle Scholar
  89. N. Coppedè, M. Giannetto, M. Villani, V. Lucchini, E. Battista, M. Careri et al., Ion selective textile organic electrochemical transistor for wearable sweat monitoring. Org. Electron. 78, 105579 (2020) ArticleGoogle Scholar
  90. H.Y.Y. Nyein, W. Gao, Z. Shahpar, S. Emaminejad, S. Challa, K. Chen et al., A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10(7), 7216–7224 (2016) ArticleCASPubMedGoogle Scholar
  91. A. Ghoorchian, M. Kamalabadi, M. Moradi, T. Madrakian, A. Afkhami, H. Bagheri et al., Wearable potentiometric sensor based on Na0.44MnO2 for non-invasive monitoring of sodium ions in sweat. Anal. Chem. 94, 2263–2270 (2022) ArticleCASPubMedGoogle Scholar
  92. P. Pirovano, M. Dorrian, A. Shinde, A. Donohoe, A. Brady, N. Moyna et al., A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 219, 121145 (2020) ArticleCASPubMedGoogle Scholar
  93. Y. Gai, E. Wang, M. Liu, L. Xie, Y. Bai, Y. Yang et al., A self-powered wearable sensor for continuous wireless sweat monitoring. Small Methods. 6(10), 2200653 (2022) ArticleCASGoogle Scholar
  94. H. Liu, Z. Gu, Q. Zhao, S. Li, X. Ding, X. Xiao et al., Printed circuit board integrated wearable ion-selective electrode with potential treatment for highly repeatable sweat monitoring. Sens. Actuators, B: Chem. 355, 131102 (2022) ArticleCASGoogle Scholar
  95. S. Kalasin, P. Sangnuang, Multiplex wearable electrochemical sensors fabricated from sodiated polymers and Mxene nanosheet to measure sodium and creatinine levels in sweat. ACS Appl Nano Mater. 6(19), 18209–18221 (2023) ArticleCASGoogle Scholar
  96. T. Kim, Q. Yi, E. Hoang, R. Esfandyarpour, A 3D printed wearable bioelectronic patch for multi-sensing and in situ sweat electrolyte monitoring. Adv. Mater. Technol. 6(4), 2001021 (2021) ArticleCASGoogle Scholar
  97. M. Joffe, C.Y. Hsu, H.I. Feldman, M. Weir, J.R. Landis, L.L. Hamm, Variability of creatinine measurements in clinical laboratories: results from the CRIC study. Am. J. Nephrol. 31(5), 426–434 (2010) ArticleCASPubMedPubMed CentralGoogle Scholar
  98. R.K. Rakesh Kumar, M.O. Shaikh, C.H. Chuang, A review of recent advances in non-enzymatic electrochemical creatinine biosensing. Anal. Chim. Acta 1183, 338748 (2021) ArticleCASPubMedGoogle Scholar
  99. K. Sato, W.H. Kang, K. Saga, K.T. Sato, Biology of sweat glands and their disorders. I. Normal sweat gland function. J. Am. Acad. Dermatol. 20(4), 537–563 (1989) ArticleCASPubMedGoogle Scholar
  100. A.J. Bandodkar, I. Jeerapan, J. Wang, Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1(5), 464–482 (2016) ArticleCASGoogle Scholar
  101. S. Kalasin, P. Sangnuang, W. Surareungchai, Satellite-based sensor for environmental heat-stress sweat creatinine monitoring: the remote artificial intelligence-assisted epidermal wearable sensing for health evaluation. ACS Biomater. Sci. Eng. 7, 322–334 (2020) ArticlePubMedGoogle Scholar
  102. K. Ji, S. Xia, X. Sang, A.M. Zeid, A. Hussain, J. Li et al., Enhanced luminol chemiluminescence with oxidase-like properties of FeOOH nanorods for the sensitive detection of uric acid. Anal. Chem. 95(6), 3267–3273 (2023) ArticleCASPubMedGoogle Scholar
  103. T. McGregor, S. Jones, Fluid and electrolyte problems in renal dysfunction. Anaesth. Intensiv. Care Med. 22(7), 406–409 (2021) ArticleGoogle Scholar
  104. Z. Zhao, Q. Li, L. Chen, Y. Zhao, J. Gong, Z. Li et al., A thread/fabric-based band as a flexible and wearable microfluidic device for sweat sensing and monitoring. Lab Chip 21(5), 916–932 (2021) ArticleCASPubMedGoogle Scholar
  105. H. Yang, Y. Ji, K. Shen, Y. Qian, C. Ye, Simultaneous detection of urea and lactate in sweat based on a wearable sweat biosensor. Biomed. Opt. Express 15(1), 14–27 (2023) ArticlePubMedPubMed CentralGoogle Scholar
  106. S.M. Pirot, K.M. Omer, A.H. Alshatteri, G.K. Ali, O.B.A. Shatery, Dual-template molecularly surface imprinted polymer on fluorescent metal-organic frameworks functionalized with carbon dots for ascorbic acid and uric acid detection. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 291, 122340 (2023) ArticleCASGoogle Scholar
  107. A.H. Alshatteri, G.K. Ali, K.M. Omer, Enhanced peroxidase-mimic catalytic activity via cerium doping of strontium-based metal-organic frameworks with design of a smartphone-based sensor for on-site salivary total antioxidant capacity detection in lung cancer patients. ACS Appl. Mater. Interfaces 15(17), 21239–21251 (2023) ArticleCASPubMedGoogle Scholar
  108. SSh. Mohammed Ameen, K.M. Omer, Temperature-resilient and sustainable Mn-MOF oxidase-like nanozyme (UoZ-4) for total antioxidant capacity sensing in some citrus fruits: breaking the temperature barrier. Food Chem. 448, 139170 (2024) ArticleCASPubMedGoogle Scholar
  109. SSh. Mohammed Ameen, K.M. Omer, Recent advances of bimetallic-metal organic frameworks: preparation, properties, and fluorescence-based biochemical sensing applications. ACS Appl. Mater. Interfaces 16(25), 31895–31921 (2024) ArticleCASPubMedGoogle Scholar
  110. P.B. Hassan, S.S.M. Ameen, L. Mohammed, S.M.M. Ameen, K.M. Omer, Enhanced antibacterial activity of a novel silver-based metal organic framework towards multidrug-resistant Klebsiella pneumonia. Nanoscale Adv. 6, 3801–3808 (2024) ArticleCASPubMedPubMed CentralGoogle Scholar
  111. A.H. Alshatteri, K.M. Omer, Dual-nanocluster of copper and silver as a ratiometric-based smartphone-assisted visual detection of biothiols. Microchem. J. 187, 108385 (2023) ArticleCASGoogle Scholar
  112. S.M. Pirot, K.M. Omer, Designing of robust and sensitive assay via encapsulation of highly emissive and stable blue copper nanocluster into zeolitic imidazole framework (ZIF-8) with quantitative detection of tetracycline. J Anal Sci Technol. 13(1), 22 (2022) ArticleCASGoogle Scholar
  113. S.M. Pirot, K.M. Omer, Surface imprinted polymer on dual emitting MOF functionalized with blue copper nanoclusters and yellow carbon dots as a highly specific ratiometric fluorescence probe for ascorbic acid. Microchem. J. 182, 107921 (2022) ArticleCASGoogle Scholar
  114. A. Bernabé-Ortiz, J.H. Zafra-Tanaka, M. Moscoso-Porras, R. Sampath, B. Vetter, J.J. Miranda et al., Diagnostics and monitoring tools for noncommunicable diseases: a missing component in the global response. Glob. Health 17(1), 26 (2021) ArticleGoogle Scholar

Funding

This work received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.